Dimension Gaps between Representability and Collapsibility
نویسندگان
چکیده
منابع مشابه
On the gap between representability and collapsibility
A simplicial complex K is called d-representable if it is the nerve of a collection of convex sets in R; K is d-collapsible if it can be reduced to an empty complex by repeatedly removing a face of dimension at most d − 1 that is contained in a unique maximal face; and K is d-Leray if every induced subcomplex of K has vanishing homology of dimension d and larger. It is known that d-representabl...
متن کاملD-representability of Simplicial Complexes of Fixed Dimension
Let K be a simplicial complex with vertex set V = {v1, . . . , vn}. The complex K is d-representable if there is a collection {C1, . . . , Cn} of convex sets in R d such that any subcollection {Ci1 , . . . , Cij} has a nonempty intersection if and only if {vi1 , . . . , vij} is a face of K. In 1967 Wegner proved that every simplicial complex of dimension d is (2d + 1)representable. He also conj...
متن کاملSign rank, VC dimension and spectral gaps
We study the maximum possible sign rank of N×N sign matrices with a given VC dimension d. For d = 1, this maximum is 3. For d = 2, this maximum is Θ̃(N1/2). Similar (slightly less accurate) statements hold for d > 2 as well. We discuss the tightness of our methods, and describe connections to combinatorics, communication complexity and learning theory. We also provide explicit examples of matric...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولOn O*-Representability and C*-Representability of ∗-algebras.
Characterization of the *-subalgebras in the algebra of bounded operators acting on Hilbert space is presented. Sufficient conditions for the existence of a faithful representation in pre-Hilbert space of a *-algebra in terms of its Groebner basis are given. These conditions are generalization of the unshrinkability of monomial *-algebras introduced by C. Lance and P. Tapper. The applications t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 2008
ISSN: 0179-5376,1432-0444
DOI: 10.1007/s00454-008-9091-9